In vitro degradation of a polymeric dye (Poly R-478) by manganese peroxidase.
نویسندگان
چکیده
The aim of this study is the evaluation of the enzymatic action of the ligninolytic enzyme manganese peroxidase (MnP), through a suitable addition of H(2)O(2), as a feasible system for the in vitro degradation of complex structures. For this purpose, a highly recalcitrant polymeric dye (Poly R-478) was selected as a model compound. An amperometric technique was used to determine the H(2)O(2) requirement in the decolorization by nonpurified MnP. Two H(2)O(2) supply strategies-fed-batch (every hour) or semicontinuous (every 5 min)-were applied. The addition of H(2)O(2) in pulses led to a limited decolorization after the pulses and the instantaneous consumption or decomposition of H(2)O(2). Therefore, this way of addition may limit the actual H(2)O(2) concentration in the reaction mixture. In contrast, the semicontinuous strategy maintained lower and prolonged concentrations of H(2)O(2), which allowed a clearly greater decolorization (48% after 2 h). In addition, the effect of Mn(+2) concentration on the decolorization efficiency was investigated to establish the optimal application of the MnP-oxidative system. The enzymatic treatment provoked not only the destruction of the chromophoric groups but also a noticeable breakdown of the chemical structure of the dye. In experiments with pure enzyme, MnP proved to be the main factor responsible for the dye decolorization.
منابع مشابه
Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes
The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cel...
متن کاملDirect oxidation of polymeric substrates by multifunctional manganese peroxidase isoenzyme from Pleurotus ostreatus without redox mediators.
VPs (versatile peroxidases) sharing the functions of LiP (lignin peroxidase) and MnP (manganese peroxidase) have been described in basidiomycetous fungi Pleurotus and Bjerkandera. Despite the importance of this enzyme in polymer degradation, its reactivity with polymeric substrates remains poorly understood. In the present study, we first report that, unlike LiP, VP from Pleurotus ostreatus dir...
متن کاملDecolorization of Azo, Triphenyl Methane, Heterocyclic, and Polymeric Dyes by Lignin Peroxidase Isoenzymes from Phanerochaete chrysosporium.
The ligninolytic enzyme system of Phanerochaete chrysosporium decolorizes several recalcitrant dyes. Three isolated lignin peroxidase isoenzymes (LiP 4.65, LiP 4.15, and LiP 3.85) were compared as decolorizers with the crude enzyme system from the culture medium. LiP 4.65 (H2), LiP 4.15 (H7), and LiP 3.85 (H8) were purified by chromatofocusing, and their kinetic parameters were found to be simi...
متن کاملEnzymatic Degradation of Lignin in Soil: A Review
Lignin is a major component of soil organic matter and also a rich source of carbon dioxide in soils. However, because of its complex structure and recalcitrant nature, lignin degradation is a major challenge. Efforts have been made from time to time to understand the lignin polymeric structure better and develop simpler, economical, and bio-friendly methods of degradation. Certain enzymes from...
متن کاملEvaluation of Dye Compounds’ Decolorization Capacity of Selected H. haematococca and T. harzianum Strains by Principal Component Analysis (PCA)
The selected strains of microscopic fungi, Haematonectria haematococca (BwIII43, K37) and Trichoderma harzianum (BsIII33), decolorized the following monoathraquinone dyes with different efficiency: 0.03 % Alizarin Blue Black B, 0.01 % Carminic Acid, 0.01 % Poly R-478, and 0.2 % post-industrial lignin. The most effective was the removal of 0.03 % Alizarin Blue Black B (50-60 %) and 0.01 % Carmin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2001